ARTIFICIAL NEURAL NETWORK [ANN]
1.1 Pengertian ANN
Artificial Neural Network (Jaringan Syaraf Tiruan) ANN adalah sistem komputasi dimana arsitektur dan operasi diilhami dari pengetahuan tentang sel syaraf biologi di dalam otak. Artificial Neural Network (Jaringan Syaraf Tiruan) merupakan model yang meniru cara kerja jaringan neural biologis.
1.2. otak sebagai system pengolah informasi
Otak manusia (juga hewan) terdiri atas sel-sel yang disebut neuron. Dibandingkan dengan sel-sel lain yang selalu mereproduksi dirinya kemudian mati, neuron memiliki keistimewaan, yaitu tidak mati. Hal ini menyebabkan informasi yang tersimpan di dalamnya dapat bertahan. Diperkirakan otak manusia terdiri atas 109neuron, dan terdapat 100 jenis neuron yang telah diketahui. Neuron-neuron ini terbagi atas grup-grup (disebut jaringan) yang dibedakan atas fungsinya dan setiap grup mengandung ribuan neuron yang saling berhubungan. Dengan demikian dapat disimpulkan bahwa otak merupakan kumpulan dari jaringan-jaringan neuron. Kecepatan proses setiap jaringan ini sebenarnya jauh lebih kecil dibandingkan dengan kecepatan proses komputer yang ada pada saat ini. Namun karena otak terdiri atas jutaan jaringan yang bekerja secara paralel (simultan), maka otak dapat mengerjakan pekerjaan yang jauh lebih kompleks dibandingkan dengan apa yang dapat dikerjakan oleh komputer yang semata-mata hanya mengandalkan kecepatan. Struktur pemrosesan paralel ini merupakan bagian lain yang menarik dari jaringan neural, yang juga dapat ditiru untuk diimplementasikan pada computer.
gambar di atas menunjukkan hubungan antara neuron pada otak. Pada gambar tersebut terdapat bagian-bagian : dendrit yang berfungsi sebagai saluran masukan bagi neuron, nucleus merupakan inti dari suatu neuron, axon berfungsi sebagai saluran keluaran dari neuron, dan synapsis yang mengatur kekuatan hubungan antar neuron.
Perbedaan antara ES (expert System) dan ANN
a. ES (expert system)
Dalam pemecahan masalah masih membutuhkan bantuan programmer
Knowledge di buat oleh programmer, sehingga knowledge dapat di telusuri prosespembuatannya
Sample yang inputnya cacat tidak dapat menghasilkan output
b. ANN
Dapat memecahkan masalah/kasus yang rumit yang tidak dapat dilakukan oleh ES
Knowledgenya terbentuk dengan sendirinya
Dapat menghasilkan output walaupun inputnya cacat
1.3 Arsitektur ANN
Setiap neuron dapat memiliki beberapa masukan dan mempunnyai satu keluaran. Jalur masukan pada suatu neuron bisa berisi data mentah atau data hasil olahan neuron sebelumnya. Sedangkan hasil keluaran suatu neutron dapat berupa hasil akhir atau berupa bahan masukkan bagi neutron berikutnya. Jaringan neuron buatan terdiri atas kumpulan grup neuron yang tersusun dalam lapisan. Gambar di bawah ini menunjukkan struktur umum jaringan syaraf buatan yang bersifat feedfordward(data proses pada satu arah)
1. Lapisan input [input Layer].
Lapisan input berfungsi sebagai penghubung jaringan ke dunia luar (sumber data).
2. Lapisan tersembunyi [Hidden Layer]
Suatu jaringan dapat memiliki lebih dari satu lapisan tersembunyi (hidden layer) atau bahkan bisa juga tidak memilikinya sama sekali. Jika jaringan memiliki beberapa lapisan tersembunyi, maka lapisan tersembunyi terbawah berfungsi untuk menerima masukan dari lapisan input.
3. Lapisan Output [Output Layer]
Prinsip kerja neuron-neuron pada lapisan ini sama dengan prinsip kerja neuron-neuron pada lapisan tersembunyi (hidden layer) dan di sini juga digunakan fungsi Sigmoid, tapi keluaran dari neuron pada lapisan ini sudah dianggap sebagai hasildari proses
4. Lapisan Output [Output Layer]
Prinsip kerja neuron-neuron pada lapisan ini sama dengan prinsip kerja neuron-neuron pada lapisan tersembunyi (hidden layer) dan di sini juga digunakan fungsi Sigmoid, tapi keluaran dari neuron pada lapisan ini sudah dianggap sebagai hasildari proses
Skema proses yang terjadi pada setiap neuron, kecuali neuron input
- Bobot adalah parameter pengkali terhadap nilai output neuron.
- Bobot dan bias diset secara random
- Wj (bias) sebagai kalibrator
- Momentum adalah penurunan nilai bobot.
- f = fungsi aktivasi transfer function
- Oi = nilai neuron ke-i
- Wji = nilai bobot penghubung neuron
- Fungsi sigmoid paling sering digunakan karena terbukti secara empiris paling efektif daripada fungsi yang lain.
CONTOH PENERAPAN ARTIFICIAL NEURAL NETWORK
Algoritma ANN lahir dari gagasan seorang psikolog Warren McCulloch dan Walter Pitts pada 1943 yang menjelaskan cara kerja jaringan syaraf dengan perangkat jaringan elektronik.
Didalam dunia seismik eksplorasi, algoritma ANN sudah cukup populer diaplikasikan, diantaranya untuk identifikasi noise, estimasi wavelet, analisa kecepatan, analisis gelombang geser, autotracking reflector, prediksi hidrokarbon, karakterisasi reservoir, dll.
Konfigurasi sederhana algoritma ANN dapat dijelaskan pada gambar dibawah ini:
Didalam dunia seismik eksplorasi, algoritma ANN sudah cukup populer diaplikasikan, diantaranya untuk identifikasi noise, estimasi wavelet, analisa kecepatan, analisis gelombang geser, autotracking reflector, prediksi hidrokarbon, karakterisasi reservoir, dll.
Konfigurasi sederhana algoritma ANN dapat dijelaskan pada gambar dibawah ini:
Courtesy Hampson Russell
Dari gambar di atas terlihat bahwa, prinsip dasar ANN adalah sejumlah parameter sebagai masukan (input layer) diproses sedemikian rupa didalam hidden layer (perkalian, penjumlahan, pembagian, dll.), lalu diproses lagi didalam output layer untuk menghasilkan sebuah output.
Courtesy Hampson Russell
Gambar diatas menunjukkan contoh penerapan ANN untuk data seismik, katakanlah kita memiliki beberapa input seperti impedance (x1), reflection strength (x2), instantaneous frequency (x3),… dll . yang akan digunakan untuk memprediksi porositas reservoir sebagai output. Maka secara sederhana porositas reservoir akan didapatkan dengan mengkalikan setiap sampel data input dengan suatu pembobotan (weight) lalu dijumlahkan, lalu hasil penjumlahan tersebut menjadi input untuk fungsi aktivasi untuk menghasilkan parameter porositas.
Fungsi aktivasi tersebut dapat berupa sigmoid function ataupun hyperbolic tangent function (perhatikan keterangan dibawah ini).
Fungsi aktivasi tersebut dapat berupa sigmoid function ataupun hyperbolic tangent function (perhatikan keterangan dibawah ini).
Courtesy Hampson Russell
Tentu kita menginginkan agar nilai porositas yang diprediksi semirip mungkin dengan nilai porositas yang sesungguhnya, dengan kata lain kita harus memiliki nilai selisih (baca error) antara nilai prediksi dengan nilai sesungguhnya yang sekecil mungkin, untuk tujuan ini didalam algoritma ANN di atas, kita harus melakukan updating nilai weight untuk masing-masing input.
SUMBER :
- Sigit Prabowo (http://sigitprabowoo.blogspot.co.id/p/kumpulan-ebook.html)
- Yani, Eli. (2005). Pengantar Jaringan Saraf Tiruan. Artikel kuliah.
- http://noviolaan.blogspot.co.id/2016/09/artificial-neural-network-ann_28.html
0 komentar:
Posting Komentar